A Sentiment Analyzer for Informal Text in Social Media

Authors: Lê Thanh Hương*, Trần Trọng Nhân


This paper introduces an approach to Twitter sentiment analysis, with the task of classifying tweets as positive, negative or neutral. In the preprocessing task, we propose a method to deal with two problems: (i) repeated characters in informal expression of words; and (ii) the affect of contrast word in determining sentence polarity. We propose features used in this task and investigate an optimal method of using these features. Classification algorithms including Decision Tree, K Nearest Neighbor, Support Vector Machine, and Adaboost are used for implementing the system. Experiment results with Twitter 2016 test dataset shown that our system achieved good results (63.7% F1-score) compared to related research in this field.


twitter, sentiment analysis, word embedding, decision tree, kNN, SVM, Adaboost
Pages : 6-12

Related Articles:

Authors : Hồ Mạnh Linh*, Tạ Sơn Xuất, Nguyễn Khắc Kiểm , Đào Ngọc Chiến
Authors : Nguyễn Anh Thái*, Đào Văn Lân, Hoàng Văn Phúc
Authors : Đỗ Trọng Hiếu*, Dương Minh Đức*, Hoàng Văn Thắng, Trần Văn Tùng, Nguyễn Trí Kiên
Authors : Đỗ Trọng Anh, Đặng Khánh Hòa, Thân Việt Đức, Vũ Song Tùng, Lê Dũng, Nguyễn Tiến Dũng*
Authors : Phạm Văn Trường*, Trần Thị Thảo*, Trịnh Công Đồng
Authors : Vu Duy Hai*, Lai Huu Phuong Trung*, Phan Dang Hung, Dao Viet Hung, Dao Quang Huan, Chu Quang Dan